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PREFACE

This Memorandum continues Project RAND's program of

research into the theory of games and its applications.

It extends recent work done on n-person games and reported

in RM-5543-PR, RM-5567-PR, and RM-543R-PR.

The result obtained herein, namely, that a large

nonzero-sum n-person game chosen at "random" is likely

to have a pure strategy equilibrium point, may have impor-

tant implications. Every game has a mixed strategy equili-

brium point, but it is not clear how or why one would ever

use such a solution concept in a real-world situation. Not

only is an optimal mixed strategy very difficult to compute,

but decisionmakers are reluctant to make operational use

of the notion because it means leaving the decision to

chance. This Memorandum indicates that if the players

have many strategies, a mixed strategy is rarely an optimal

one. Thus many game theory models may take on additional

significance.



i
SUMMARY

A "random" n-person noncooperative game-the game that

pro.iibits communication and therefore coalitions among the

n-players-is shown to have a pure strategy solution with

a high pro)bability. A solution of a game is an equilibrium

point or a set of strategies, one for each player, such that

if n - I players use their equilibrium strategies then the

1 n-th player has no reason to deviate from his equilibrium

strategy. It is showti that the probability of a solution

in pure strategies for large random games converges to

1 - I for all n 2.

e

I
I
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I. INTRODUCTION

The concept of a solution, or optimal strategy,

frequently used for an n-person noncooperative game is the

equilibrium strategy or equilibrium point. In order to

assure the existence of a solution it is necessary to

introduce mixed strategies. Except for the 2-person zero-

sum game, however, it is generally very difficult to compute

an optimal mixed startegy. Further, the decision-maker is

reluctant to accept the operational notion of a mixed

strategy.

These limitations of mixed strategies lead naturally

to the hope that mixed strategy solutions are rarely

required, or that a game chosen at random will in fact

possess a pure strategy srolution. For a 2-person zero-sum

game this hope is not fulfilled; for large matrices in such

games it is almost certain that the solution will be a mixed

strategy, or the chance of a pure strategy solution is

almost negligible.

It was conjectured that the optimal strategy of an

n-person game would have a similar property. The present

paper shows that with respect to solution, the n-person

game is different from the 2 -person zero-sum game. It is

shown that the probability of a solution in pure strategies

is quite large. in fact converging to

1 - e- .632+
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foL large games. Further, this result is the same regard-

less of the number of players, two or more.
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2. GAMES AND TRUNCATIONS

In the normal form of an n-person noncooperative game

the i-th player (i ' n) has mi strategies which we label

ui(l ui M i). A play of a game can be represented by
nan n-vector U (uP, u 2 , ... ,Un), giving us m = -mi=I I

possible plays. For each play U and each player i there

exists a p_9yoff Mi(U), representing the payoff to the i-th

player for the play U. There are therefore n-, payoffs.

We now define a truncation of a play with respect to

the i-th player to be an n - I vector

Ui = (Ul, u2 -, ui-I, ui+I, ... , Un).

A truncation of a play leaves out the i-th player's strategy

or

U = (Ui, u).
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3. EQUILIBRIUM POINT

Nash '1' first introduced the notion of an equilibrium

point, and he showed that every game possesses such a point

in mixed strategies. An n-vector of pure strategies

U = (uI, u2. . . . . un) is an equilibrium point in pure

strategies if for each i _ n and ui i,

(I) Mi(U*) Mi(U*, ui).

Equivalently, we have, for each i n,

(2) Mi(U*) = Max Mi(U*, ui).

If the above condition is satisfied, U will be referred

to as a pure equilibrium point or PE solution or just PE.

For a 2 -person zero-sum game a PE solution is the same as

a saddle-point. We also call a PE point a solution

of the n-person game.

I I I
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4. RANDOM GAMES

It is well-known that PE solutions are rare for 2-

person zero-sum games. For example, the probability that

a "random" 2 -person zero-sum game has a PE solution is

t I

mI•! m2!

(m1 -n 2 -- 1)

This -esult exhibits the need for mixed strategies. even

if the number of strategies for each player isn't very

large in the 2-person zero-sum game.

It is natural to inquire about the need for mixed

strategies in arbitrary n-person games. Is it likely that

we can get by with pure strategies? To answer this inquiry

we analyze "random games."

We define a random n-person game by the following

properties:

(i) The n' payoffs M.(U), are independent randomI

variables.

(ii) For each i, the payoffs Mi(U) have the same

continuous probability distribution.

From the above definition of a random game it follows

that the n payoffs are distinct in such a game. Further,

the probability that a random n-person game has a PE

solution is now well-defined.

Let E(U) be the event that U is a PE solution of the

game. Define the following probabilities
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S1 , PrýE(UJ)", S52 ri• PrrE(UJ)E (uk) ,

k k

S3 - PrfE(UJ)E(uk)E(U)', ..
j,k,i

Let Pn( (l, m2' ... , mrn) be the probability that a

random n-person game, where the n players have mIn m2, ... 9 mn

strategies, respectively, has at least one PE solution.

Then

Pn(m(lm, m2 , ... , in) = Pr f[ E(U)
U

Then by the so-called method of inclusion and exclusion

P n (mi, m2' " " n ) = r (- 1 )t+l St*

t=l

Since the events are equally-likely, we have that

Nt

where Nt is the cardinality of the family of all sets which

have t equilibrium points, or

(3) P n(m , n, mn) (_l)t+l Nt ,-t

t=l-
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5. EXISTENCE OF t EQUILIBRIUM POINTS

In order to determine Nt we shall derive a condition

that a game have t equilibrium points. Our definition

of equilibrium point and random game yields the following

Theorem 1. A necessary and sufficient condition that

U1 , U2, , are t eguilibrium points of an n-person

game is that

1 2 t
Ui U . U. are distinct for each i n.

Proof: Suppose

Then since U1 and U2 are equilibrium points

Mi(UI) = max Mi(Ui, ui)
1 i-, m 1 1 1

max Mi(U2, ui) = Mi(U 2),
ui~mi

contradicting the implication that all n- payoffs are

distinct.

Since the U's are n-vectors and the Ui's are (n-l)-

vectors, the theorem states that each pair of U's must

differ in at least two of their n-components in order to be

PE solutions.
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6. EQUILIBRILUM POINTS IN TWO-PERSON GAMES

If n - 2, a play of the game can be represented by a
2 -vector U (o, f). In order for (o1 1 2 2

(at ,t) to be t equilibrium points, then from Theorem 1

it follows that

1 2t
0 1 2 0 . are distinct

and

1 2 •t1, are distinct.

To compute N C we observe that t distinct a's can be

chosen in ( ) ways and t distinct f-'s can be chosen in

2 ) ways, and then the two sets can be paired off in t!

ways. Thus

mI m2

Nt= ( )(t )t.

and

mI m2
( 4 ) P 2 ( l 2 ( -l) t l l ( tl ) ( t ) t ! (m m 2 )- t

2(m, M) =t=l t t 12

This result was first obtained by K. Goldberg, A. J. Goldman

and M. Newman 2 They also obtained the asymptotic value

of P 2 (ml, m 2 ).
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7. EQUILIBRIUM POINTS IN THREE PERSON-GaMES

If n - 3, it is convenient to decompose the set of

= mlm2 m3 points into mlm2 sets of the form Sij. Each
member U = (u 1 , u 2 , u 3 ) of Sij is such that u, = i, u2 = j,

u3 n m3 . Thus each set Sij contains m3 points. Now each

Sij can contain at most one equilibrium point. Therefore

Nt can be determined by the following process:

(i) Choose t sets S ill, Si2J2' ".'' Sit from the

m1 m2 sets Sij.

(ii) Choose one member from each of these t sets so

that the t choices are PE points.

Let ji(t) be the number of ways of choosing t PE points

satisfying (ii) above-i.e., A(t) is the number of ways of

choosing t equilibrium points from t given sets

S. , , S... ....... S • We have then

(5) Nt = ( )b(t).

For example, if t = 1, m(i) = i 3 , and

NI = (m m2 )m 3 =

If t = 2, we have

(2) - 2 if i i2. J 2

jL(2) - (mi3  - l)m 3  if i = i 2  or l j2

1 ¾I i 2
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Let lit represent the number of ways of choosing t

equilibrium points from the t sets Silil, S2J2, .. ", S.it

given that t - I equilibrium points have been chosen from

the t - 1 sets S S.l S...........•. . Then we haveth -ist lj 1J 2  t-Jt-i

Ai M m3 and

t
(6) M(t) = 1t (t-1) = "k

k=l

It is evident that pt also represents the number of

ways of choosing the t-th PE from the set SitJt given that

(t-l) PE points have been chosen from the (t-l) sets

Silil' Si2J2' "'St-l2t-I Hence pt must be bounded as

follows:

(7) m3- t + 1I;' /It m3

For example, to compute 112' we have

42= m3  if iI 2' i 2 , J J2

M mi3 - 1 if iI = i 2 or Jl - J2

Now the weights attached to the first value, m 3. is

(mI - l)(m2 - 1) while the weights attached to second value

is mI + m2 - 2. Therefore we have
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mI + m2 -- 2
•2 - 3 - Iml2 - I

We can now compute

m1im2 m3 --- m21 -2 3 + 2
A(2) m m3  ( m2 1  )

m3 (- S+2
mlmi2 - •

where S -mI + m2 + m3 .

Substituting in (5) we get

N2 = ( 2 ) 4( 2 ) s +2)

To compute 13 we need to examine four cases

13 = m3 - 2 if iI = i 2 = i 3 and j,, j2 ' j 3 distinct,

or if Jl = J2 = j3 and iI, i 2, i 3 distinct

13 = m3 - 1 if i1 . i 2 4 i 3 , Jl' j 2 ' j 3 distinct

or if Jl j j 2 + j3' i1 9 i2, i 3 distinct

43 - m3 if i19 i2, i3 distinct, Jl' j2' j3 distinct

(m 3-1) 2 i

P33-i)2 if i I = i2 + '3 and j,1 - j3 . 2

or if Jl = j2 ' j3 and iI i 3 + i 2
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The weights associated with each of the four above

values of 43 are, respectively

(mI - l)(m, - 2) + (m 2 - l)(m2 - 2)'

2(m, - l)(m2 - 2 + 2(m - 1) 2 (m 2 - 1)

(mI - l)(m2 - l)(mlm2 - m- m2)

2(mI - l)(m2 - 1)

The sum of the above weights is (mlm 2 - l)(mlm2 - 2).

Using the above weights and values of '3 we obtain an

average value of 113 as a function of mI, m 2 , mi3 . In

particular, if mI n1  m2 i m3  i m, this average value is

2(2m3 
- 5m + 1)

k13f in m(m + l)(m2 - 2)

In terms of the above value of A13. we can now evaluate

mlm2
N3 f ( 1 )4(3)

3

mlm2- 2
"- -- 3---Ny

- 2m3 )(" - S + 2)
"- -- m3113

I I ,
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In a similar manner we can compute recursively the

values of Nt and then compute the required probability

S• (-it+l Nt-t
P 3 (mil m2i m 3 ) = (-I)

t=l

(8) (-1)t~l( ) t 4k

#=l t kgl

It is of interest to determine the asymptotic value

of P 3 (ml, m2 , m 3 ) as the number of strategies increase for

each player. We note that the absolute value of the t-th

term of the series for P3 is

N-t (m1im2  t Ak
Nt ( )t k=l mim2 m 3

1 t (mlm2 - k+l)I k
k=l m1 m2 m3

where

m3 -k+l • k m3. k M m3

Hence we have for k t mI mn2

(1 k-i k_) (mInm 2 - k+l)Ak
m 3  mm m - m--)
1m2 m312 3 i 1m

Thus
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t k-) kk-I t (1mM2 - k+l)hLk .... t

k= mlm 2  3 m=l m2m3  k=l I 2

From the above inequality, it follows that

t I mlm2 - k+l)i klim R -

mm2,m3• k=l m Im 2 m3

or

-t i
lim Nt -t 1~

mI ,m 2 ,m 3 -

Hence we get the asymptotic value of the probability

-1 t +1 I[
rim P 3 (m,m 2 ,m 3 ) = I = I - e

m .m 2 ,m 3
t=1 t
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8 PURE EQUILIBRIUM POINTS IN n-PERSON GAMES

We now evaluate the probability of a PE solution in

a random n-person game, where the i-th player has mi

strategies. In such a game the set of = mlm 2 ... mn

points can be decomposed into mIm 2  i mn_ 1 = M sets of

the form SI i 2 where each set contains m n points.1 2 n-I

Each member U = (uI' u 2 ,' -. , u.) of Si.l2 . in-1 is

such that uI = il, u 2 = i 2 . . . .. , u,_ = in-l' and

un mIn = m. Thus each set contains m points.

From Theorem I it follows that each set Si I2 ..
1 2 n-I

can contain at most one PE point. Therefore choosing t

equilibrium points from the points is equivalent to

choosing t of the M sets and then choosing one point from

each of these t chosen sets. Again, let ji(t) be the number

of ways of choosing t equilibrium points from the t chosen

sets (we emphasize that only one point may be chosen from

each set). Then. w, ave

Nt = ( )11(t)
Nt

As in the previous section let p t be the number of

ways of choosing t equilibrium points from the t sets

S... . = TI' S .. . = T2 . . . . .- .  S. 2 T

1 2 'n-I I jlj2 in-I 2 n-
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Fivt, n that t - I equilibrium points have been chosen from

the t - 1 sets T1. T 2 ..... Ttl. It follows that

t

k=l

In making the above choices we need to choose the t-th

PE point from the set Tt which contains m points. We thus

have the following inequality

(10) m - t + 1 .t 4 m

The required probability of a PE point in the random

game is given by

P n(m m2. ... m ) ( t+I N *-t
t=l

t+I M -t

t=1 k=1

We may write thic probability as

(11) p (M. m) ) ) t+1(M) Mt k

n t=l k=

where iik is a function of mi1 . m2' . . . . .. . . . m , m1

For each M and m we can compute P n(M,m) by first
11k

computing -m- where k = t. From the definition of t



-17-

#i 42
we have - - 1. In order to get - we note that

42 M M if il I Jil' '2 * j2' '' 'n-i in-I

12 " m-I- if il - jl, or i2 = j2' .. , or in-i = in-I

The weight associated with 42 = m is

(mI1 - i) (m 2 - i) ... (mn_I - 1) = D. The weight associated

with 12 = - 1, is r - D- I. We thus get

•- D- 1
2 m 17M-I

and

42 r- D - 1 mM - D - I
m m(M-) mM - m

13 14 At
In a similar manner we can compute m ' m "' and then

1k
obtain P Of course, the computation of m- becomes more

cumbersome with each value of k. However, Pn has an

asymptotic value given by

Theorem 2. For all n-person games (n > 2)

lim Pn(ml, m2 , ... , m) 1 e-.

Proof; Equation (II) can be written as
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t+l t-1 t

n t-l t: M k1-i -

Hence we have

trIt-l t ARk(12) P•(M,M) (1 e-1 M m•tt-
tw i. =l l

Now let

t--i t

• t(Mm) - (1 -- j) "--

t(Mm) -i-i 
kl-

It is clear from (10) that for all t,

0 ý At(M,m) ; I.

Now for all i < T < M we have

I i I 1 >I- T

Hence

t-l TT

t-l (i-) - > (i)- R) for t<T<M

i-I aet

We also have from (10) that
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Tro m-i> i-t>I-T for k< t <T.mm m m

Therefore

t A k > T )T t < T <m.

mkml

Substituting the above inequalities in the definition

of ;t(M,m) we have

T)T T T
At(M,m) ( (1 - (i -m for t K T " M

and t : T , m
T2 T2Ž (1---) (1 -T)

T2  T2

2( M m )

Now T is arbitrary but T < M and T K m. Suppose we

restrict T so that T3 < M, and T , m, then -< and

T2 1
m- and we obtain the inequality

I >A (Mm)>1- 2 for t < T < T3 < M

and <T ' T 3 < m

Or
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0< - 2 T3

• i-ý •(MAm ,. for t KT T 3 M

and t ,K. T 3 m

Returning to (12) we have

T

Pn(M,m)- (1 _ e-)C t>(
t-Q W d + UT -t(MIM)1 1

e- + I t il- V ?l - Xt(M m)]1t>T t"

The second term represents the "tail" of a converging

alternating series, hence there exists ý > 0 such that

(- )t
t! i - "t(M,m) ,

t>T

giving us

262P (M,m) e-lI T

Let T > 2' then

I Pn(M,m)- (i- e-l) 2,

which proves the theorem. It is of interest to note that

Theorem 2 requires only that two of the n players sets of

strategies be infinite.
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